题目内容

20.计算下面各组算式,从计算结果中你发现了什么?你能再写出两组这样的式子吗?
$\left\{\begin{array}{l}{\frac{1}{2}-\frac{1}{3}=}\\{\frac{1}{3}-\frac{1}{4}=}\end{array}\right.$
$\left\{\begin{array}{l}{\frac{1}{4}-\frac{1}{5}=}\\{\frac{1}{5}-\frac{1}{6}=}\end{array}\right.$
$\left\{\begin{array}{l}{\frac{1}{8}-\frac{1}{9}=}\\{\frac{1}{9}-\frac{1}{10}=}\end{array}\right.$.

分析 根据分数减法的计算方法进行计算,然后再根据每个算式的差进行总结规律,并举例说明即可.

解答 解:$\left\{\begin{array}{l}{\frac{1}{2}-\frac{1}{3}=\frac{1}{6}}\\{\frac{1}{3}-\frac{1}{4}=\frac{1}{12}}\end{array}\right.$
$\left\{\begin{array}{l}{\frac{1}{4}-\frac{1}{5}=\frac{1}{20}}\\{\frac{1}{5}-\frac{1}{6}=\frac{1}{30}}\end{array}\right.$
$\left\{\begin{array}{l}{\frac{1}{8}-\frac{1}{9}=\frac{1}{72}}\\{\frac{1}{9}-\frac{1}{10}=\frac{1}{90}}\end{array}\right.$
从计算结果中发现:当分子是1,分母分别为两个相邻的自然数时,它们的差就是两个相邻自然数的乘积,分子仍然是1,
例如:$\left\{\begin{array}{l}{\frac{1}{6}-\frac{1}{7}=\frac{1}{42}}\\{\frac{1}{7}-\frac{1}{8}=\frac{1}{56}}\end{array}\right.$和$\left\{\begin{array}{l}{\frac{1}{10}-\frac{1}{11}=\frac{1}{110}}\\{\frac{1}{11}-\frac{1}{12}=\frac{1}{132}}\end{array}\right.$.

点评 解答此题的关键是根据分数减法的计算方法进行计算,然后再从计算结果中总结规律且应用规律.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网