题目内容
| 解方程 (1)(1-75%)x=10 | (2)x+ |
解:(1)(1-75%)x=10,
0.25x=10,
0.25x÷0.25=10÷0.25,
x=40;
(2)x+
x=3.6,
(1+
)x=3.6,
x=3.6,
x×
=3.6×
,
x=2.
分析:(1)原式变为0.25x=10,根据等式的性质,两边同除以0.25即可;
(2)先根据乘法分配律改写成(1+
)x=3.6,即
x=3.6,再根据等式的性质,两边同乘
即可.
点评:在解方程时应根据等式的性质,即等式两边同加上、同减去、同乘上或同除以某一个数(0除外),等式的两边仍相等,同时注意“=”上下要对齐.
0.25x=10,
0.25x÷0.25=10÷0.25,
x=40;
(2)x+
(1+
x=2.
分析:(1)原式变为0.25x=10,根据等式的性质,两边同除以0.25即可;
(2)先根据乘法分配律改写成(1+
点评:在解方程时应根据等式的性质,即等式两边同加上、同减去、同乘上或同除以某一个数(0除外),等式的两边仍相等,同时注意“=”上下要对齐.
练习册系列答案
相关题目