题目内容
| ①899998+89998+8998+898 | ②199.9×19.98-199.8×19.97 |
| ③2.5×10.8 | ④999×99×9 |
| ⑤888×87+112×99-112×12 | ⑥0.2+0.4+0.6+…+1.8+2. |
分析:①(900000-2)+(90000-2)+(9000-2)+(900-2),计算即可;
②根据数字特点,原式变为19.99×199.8-199.8×19.97,运用乘法分配律简算;
③把10.8看作(10+0.8),运用乘法分配律简算;
④根据数字特点,原式变为(1000-1)×99×9,然后再进行拆分,计算即可;
⑤运用乘法分配律,原式变为888×87+112×(99-12),即888×87+112×87,再次运用乘法分配律简算;
⑥此题属于公差为0.2的等差数列,运用高斯求和公式即可解答.
②根据数字特点,原式变为19.99×199.8-199.8×19.97,运用乘法分配律简算;
③把10.8看作(10+0.8),运用乘法分配律简算;
④根据数字特点,原式变为(1000-1)×99×9,然后再进行拆分,计算即可;
⑤运用乘法分配律,原式变为888×87+112×(99-12),即888×87+112×87,再次运用乘法分配律简算;
⑥此题属于公差为0.2的等差数列,运用高斯求和公式即可解答.
解答:解:①899998+89998+8998+898,
=(900000-2)+(90000-2)+(9000-2)+(900-2),
=900000+90000+9000+900-8,
=999900-8,
=999892;
②199.9×19.98-199.8×19.97,
=19.99×199.8-199.8×19.97,
=199.8×(19.99-19.97),
=199.8×0.02,
=3.996;
③2.5×10.8,
=2.5×(10+0.8),
=25+2.5×0.8,
=25+2,
=27;
④999×99×9,
=(1000-1)×99×9,
=1000×99×9-99×9,
=1000×(100-1)×9-(100-1)×9,
=1000×100×9-1000×9-100×9+9,
=900000-9000-900+9,
=890109;
⑤888×87+112×99-112×12,
=888×87+112×(99-12),
=888×87+112×87,
=(888+112)×87,
=1000×87,
=87000;
⑥0.2+0.4+0.6+…+1.8+2,
=(0.2+2)×10÷2,
=2.2×10÷2,
=11.
=(900000-2)+(90000-2)+(9000-2)+(900-2),
=900000+90000+9000+900-8,
=999900-8,
=999892;
②199.9×19.98-199.8×19.97,
=19.99×199.8-199.8×19.97,
=199.8×(19.99-19.97),
=199.8×0.02,
=3.996;
③2.5×10.8,
=2.5×(10+0.8),
=25+2.5×0.8,
=25+2,
=27;
④999×99×9,
=(1000-1)×99×9,
=1000×99×9-99×9,
=1000×(100-1)×9-(100-1)×9,
=1000×100×9-1000×9-100×9+9,
=900000-9000-900+9,
=890109;
⑤888×87+112×99-112×12,
=888×87+112×(99-12),
=888×87+112×87,
=(888+112)×87,
=1000×87,
=87000;
⑥0.2+0.4+0.6+…+1.8+2,
=(0.2+2)×10÷2,
=2.2×10÷2,
=11.
点评:完成此题,注意分析式中数据,运用所学知识灵活解答.
练习册系列答案
相关题目