题目内容
(1)3+5+7+9+…+73+75
(2)1÷(1÷2)÷(2÷3)÷…÷(1999÷2000)÷2000
(3)1240×3.8+124×51+1.24×1400+760×9.6+0.76×700
(4)8888×1111+4444×7778.
(2)1÷(1÷2)÷(2÷3)÷…÷(1999÷2000)÷2000
(3)1240×3.8+124×51+1.24×1400+760×9.6+0.76×700
(4)8888×1111+4444×7778.
分析:(1)直接套用等差数列公式即可,等差数列求和=(首项+末项)×项数÷2;
(2)把括号内的除法改为分数形式,然后把除法改为乘法,约分即可;
(3)根据数字特点,原式变为124×38+124×51+124×14+76×96+76×7,运用乘法分配律计算;
(4)把8888变为4444×2,运用乘法分配律计算.
(2)把括号内的除法改为分数形式,然后把除法改为乘法,约分即可;
(3)根据数字特点,原式变为124×38+124×51+124×14+76×96+76×7,运用乘法分配律计算;
(4)把8888变为4444×2,运用乘法分配律计算.
解答:解:(1)3+5+7+9+…+73+75,
=(3+75)×[(75-3)÷2+1],
=78×37÷2,
=1443;
(2)1÷(1÷2)÷(2÷3)÷…÷(1999÷2000)÷2000,
=1÷
÷
÷…÷
÷2000,
=1×2×
×…×
×
,
=1;
(3)1240×3.8+124×51+1.24×1400+760×9.6+0.76×700,
=124×38+124×51+124×14+76×96+76×7,
=124×(38+51+14)+76×(96+7),
=124×103+76×103,
=103×(124+76),
=103×200,
=20600;
(4)8888×1111+4444×7778,
=4444×2×1111+4444×7778,
=4444×(2222+7778),
=4444×10000,
=44440000.
=(3+75)×[(75-3)÷2+1],
=78×37÷2,
=1443;
(2)1÷(1÷2)÷(2÷3)÷…÷(1999÷2000)÷2000,
=1÷
| 1 |
| 2 |
| 2 |
| 3 |
| 1999 |
| 2000 |
=1×2×
| 3 |
| 2 |
| 2000 |
| 1999 |
| 1 |
| 2000 |
=1;
(3)1240×3.8+124×51+1.24×1400+760×9.6+0.76×700,
=124×38+124×51+124×14+76×96+76×7,
=124×(38+51+14)+76×(96+7),
=124×103+76×103,
=103×(124+76),
=103×200,
=20600;
(4)8888×1111+4444×7778,
=4444×2×1111+4444×7778,
=4444×(2222+7778),
=4444×10000,
=44440000.
点评:注意分析数据,运用运算定律或运算技巧,灵活简算.
练习册系列答案
相关题目