题目内容
(1+
+
+
)×(
+
+
+
)-(1+
+
+
+
)×(
+
+
)
| 1 |
| 2008 |
| 1 |
| 2009 |
| 1 |
| 2010 |
| 1 |
| 2008 |
| 1 |
| 2009 |
| 1 |
| 2010 |
| 1 |
| 2011 |
| 1 |
| 2008 |
| 1 |
| 2009 |
| 1 |
| 2010 |
| 1 |
| 2011 |
| 1 |
| 2008 |
| 1 |
| 2009 |
| 1 |
| 2010 |
考点:分数的巧算
专题:计算问题(巧算速算)
分析:把
+
+
看成一个数a,把
+
+
+
看成一个数b,把一个复杂的分数运算简化成代数式的计算,恰巧在计算的过程中ab和-ab抵消,使问题更加简单化;因此得解.
| 1 |
| 2008 |
| 1 |
| 2009 |
| 1 |
| 2010 |
| 1 |
| 2008 |
| 1 |
| 2009 |
| 1 |
| 2010 |
| 1 |
| 2011 |
解答:
解:令a=
+
+
,
b=
+
+
+
,
则原式写作(1+a)×b-(1+b)×a,
去掉括号,得:
原式=b+ab-a-ab,
=b-a,
=b=
+
+
+
-(
+
+
),
=
.
| 1 |
| 2008 |
| 1 |
| 2009 |
| 1 |
| 2010 |
b=
| 1 |
| 2008 |
| 1 |
| 2009 |
| 1 |
| 2010 |
| 1 |
| 2011 |
则原式写作(1+a)×b-(1+b)×a,
去掉括号,得:
原式=b+ab-a-ab,
=b-a,
=b=
| 1 |
| 2008 |
| 1 |
| 2009 |
| 1 |
| 2010 |
| 1 |
| 2011 |
| 1 |
| 2008 |
| 1 |
| 2009 |
| 1 |
| 2010 |
=
| 1 |
| 2011 |
点评:此题中发现规律,用字母代换,使复杂分数计算简化是解决此题的关键.
练习册系列答案
相关题目