题目内容
求下列各组数的最小公倍数:
8和27 12、36和54 15、8和30.
8和27 12、36和54 15、8和30.
考点:求几个数的最小公倍数的方法
专题:数的整除
分析:根据求两个数最大公约数也就是这两个数的公有质因数的连乘积,最小公倍数是公有质因数与独有质因数的连乘积求解.
解答:
解:8=2×2×2
27=3×3×3
所以8和27互质,最小公倍数是8×27=216;
12=2×2×3
36=2×2×3×3
54=2×3×3×3
所以12、36和54的最小公倍数是2×3×2×3×3=108
15=3×5
8=2×2×2
30=2×3×5
所以15、8和30的最小公倍数是3×5×2×2×2=120.
27=3×3×3
所以8和27互质,最小公倍数是8×27=216;
12=2×2×3
36=2×2×3×3
54=2×3×3×3
所以12、36和54的最小公倍数是2×3×2×3×3=108
15=3×5
8=2×2×2
30=2×3×5
所以15、8和30的最小公倍数是3×5×2×2×2=120.
点评:考查了求几个数的最大公因数的方法与最小公倍数的方法:两个数的公有质因数连乘积是最大公约数;两个数的公有质因数与每个数独有质因数的连乘积是最小公倍数;数字大的可以用短除法解答.
练习册系列答案
相关题目