题目内容
(1+
+
+
)×(
+
+
+
)-(1+
+
+
+
)×(
+
+
)=
.
| 1 |
| 2002 |
| 1 |
| 2004 |
| 1 |
| 2006 |
| 1 |
| 2002 |
| 1 |
| 2004 |
| 1 |
| 2006 |
| 1 |
| 2008 |
| 1 |
| 2002 |
| 1 |
| 2004 |
| 1 |
| 2006 |
| 1 |
| 2008 |
| 1 |
| 2002 |
| 1 |
| 2004 |
| 1 |
| 2006 |
| 1 |
| 2008 |
| 1 |
| 2008 |
分析:此题可以设
+
+
=a,
+
+
+
=b,原式变为(1+a)×b-(1+b)×a,然后化简即可.
| 1 |
| 2002 |
| 1 |
| 2004 |
| 1 |
| 2006 |
| 1 |
| 2002 |
| 1 |
| 2004 |
| 1 |
| 2006 |
| 1 |
| 2008 |
解答:解:设
+
+
=a,
+
+
+
=b,
原式变为(1+a)×b-(1+b)×a,
=b+ab-a-ab,
=b-a,
=
+
+
+
-(
+
+
),
=
.
故答案为:
.
| 1 |
| 2002 |
| 1 |
| 2004 |
| 1 |
| 2006 |
| 1 |
| 2002 |
| 1 |
| 2004 |
| 1 |
| 2006 |
| 1 |
| 2008 |
原式变为(1+a)×b-(1+b)×a,
=b+ab-a-ab,
=b-a,
=
| 1 |
| 2002 |
| 1 |
| 2004 |
| 1 |
| 2006 |
| 1 |
| 2008 |
| 1 |
| 2002 |
| 1 |
| 2004 |
| 1 |
| 2006 |
=
| 1 |
| 2008 |
故答案为:
| 1 |
| 2008 |
点评:此题用字母代表数,计算起来比较简便,也不易出错,不失为一种好办法.
练习册系列答案
相关题目