题目内容
解方程.
(1+
)x=250
x-
x=
(1-
-
)x=550.
(1+
| 1 |
| 4 |
x-
| 3 |
| 8 |
| 5 |
| 3 |
(1-
| 1 |
| 4 |
| 1 |
| 5 |
分析:(1)先化简方程,再依据等式的性质,方程两边同时除以
求解,
(2)先化简方程,再依据等式的性质,方程两边同时除以
求解,
(3)先化简方程,再依据等式的性质,方程两边同时除以
求解.
| 5 |
| 4 |
(2)先化简方程,再依据等式的性质,方程两边同时除以
| 5 |
| 8 |
(3)先化简方程,再依据等式的性质,方程两边同时除以
| 11 |
| 20 |
解答:解:(1)(1+
)x=250,
x=250,
x÷
=250÷
,
x=200;
(2)x-
x=
,
x=
,
x÷
=
÷
,
x=2
;
(3)(1-
-
)x=550,
x=550,
x÷
=550÷
,
x=1000.
| 1 |
| 4 |
| 5 |
| 4 |
| 5 |
| 4 |
| 5 |
| 4 |
| 5 |
| 4 |
x=200;
(2)x-
| 3 |
| 8 |
| 5 |
| 3 |
| 5 |
| 8 |
| 5 |
| 3 |
| 5 |
| 8 |
| 5 |
| 8 |
| 5 |
| 3 |
| 5 |
| 8 |
x=2
| 2 |
| 3 |
(3)(1-
| 1 |
| 4 |
| 1 |
| 5 |
| 11 |
| 20 |
| 11 |
| 20 |
| 11 |
| 20 |
| 11 |
| 20 |
x=1000.
点评:本题考查知识点:依据等式的性质解方程.
练习册系列答案
相关题目