题目内容

在乘积1×2×3×…×498×499×500中,末尾有
124
124
个零.
分析:在乘积末尾得到一个0,就必须要有一个质因数5和一个质因数2相乘,在乘积的质因数里2多,5少,所以只要确定5的个数即可得到乘积末尾有的零的个数.
解答:解:有因数5的个数是:500÷5=100,
有因数25的个数为:500÷25=20,
有因数125的个数为:500÷125=4,
所以一共有:100+20+4=124(个),
答:在乘积1×2×3×…×498×499×500中,末尾有124个零.
故答案为:124.
点评:解答此题的关键的确定算式中质因数5的个数,因为因数5的个数少,2的个数多,所以有几个因数5乘积的末尾就有几个零.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网