题目内容
若(1+
)×(1+
)×(1+
)×…(1+
)的积大于2009,求n的最小值.
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| n |
考点:最大与最小
专题:传统应用题专题
分析:由于(1+
)×(1+
)×(1+
)×…(1+
)=
×
×
×
×…×
=
×(n+1),由于它们的积大于2009,即
×(n+1)>2009,据此分析即可.
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| n |
| 4 |
| 3 |
| 5 |
| 4 |
| 7 |
| 6 |
| 8 |
| 7 |
| 1 |
| n |
| 1 |
| 3 |
| 1 |
| 3 |
解答:
解:(1+
)×(1+
)×(1+
)×…(1+
)=
×
×
×
×…×
=
×(n+1),
×(n+1)>2009
n+1>3027,
n>3026.
则n最小为3027.
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| n |
| 4 |
| 3 |
| 5 |
| 4 |
| 7 |
| 6 |
| 8 |
| 7 |
| 1 |
| n |
| 1 |
| 3 |
| 1 |
| 3 |
n+1>3027,
n>3026.
则n最小为3027.
点评:完成本题要注意分析式中数据的特点及内在规律,然后根据规律解答.
练习册系列答案
相关题目