题目内容
定义A※B=A2+B2-AB,计算
(1)(4※3)+(8※5)的值;
(2)(2※3)※4的值;
(3)(2※5)※(3※4)的值.
(1)(4※3)+(8※5)的值;
(2)(2※3)※4的值;
(3)(2※5)※(3※4)的值.
分析:根据新运算的方法:A※B等于这两个数的平方和与两个数的乘积的差计算即可.
解答:解:(1)(4※3)+(8※5)
=(42+32-3×4)+(82+52-5×8)
=13+49
=62;
答:(4※3)+(8※5)的值是62.
(2)(2※3)※4
=(22+32-2×3)※4
=7※4
=72+42-7×4
=37;
答:(2※3)※4的值是37.
(3)(2※5)※(3※4)
=(22+52-2×5)※(32+42-3×4)
=19※13
=192+132-19×13
=361+169-247
=283;
答:(2※5)※(3※4)的值是283.
=(42+32-3×4)+(82+52-5×8)
=13+49
=62;
答:(4※3)+(8※5)的值是62.
(2)(2※3)※4
=(22+32-2×3)※4
=7※4
=72+42-7×4
=37;
答:(2※3)※4的值是37.
(3)(2※5)※(3※4)
=(22+52-2×5)※(32+42-3×4)
=19※13
=192+132-19×13
=361+169-247
=283;
答:(2※5)※(3※4)的值是283.
点评:解决本题的关键是找出新运算的方法,再利用新运算的方法计算.
练习册系列答案
相关题目