题目内容

18.解方程.
X+$\frac{3}{10}$=$\frac{5}{10}$;       y+2y=0.12;         $\frac{5}{6}$-x=$\frac{1}{2}$.

分析 ①根据等式的性质,在方程两边同时减$\frac{3}{10}$,即可得解;
②先化简左边,利用等式的性质,方程两边同时除以3,即可得解;
③利用等式的性质,在方程两边同时加x,在方程两边同时减$\frac{1}{2}$,即可得解.

解答 解:①X+$\frac{3}{10}$=$\frac{5}{10}$
  X+$\frac{3}{10}$$-\frac{3}{10}$=$\frac{5}{10}$$-\frac{3}{10}$
         x=$\frac{1}{5}$

②y+2y=0.12
    3y=0.12
 3y÷3=0.12÷3
     y=0.04

③$\frac{5}{6}$-x=$\frac{1}{2}$
  $\frac{5}{6}$-x+x=$\frac{1}{2}$+x
    $\frac{1}{2}$+x=$\frac{5}{6}$
 $\frac{1}{2}$+x$-\frac{1}{2}$=$\frac{5}{6}$$-\frac{1}{2}$
      x=$\frac{1}{3}$

点评 此题考查了根据等式的性质解方程,即等式两边同加上、同减去、同乘上或同除以一个不为0的数,等式仍相等.同时注意“=”要上下对齐.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网