题目内容
解方程.
|
|
| ||||||||||||||||||||||
x×(
|
x-
|
分析:(1)先化简方程,再依据等式的性质,方程两边同时除以
求解,
(2)先化简方程,再依据等式的性质,方程两边同时除以
求解,
(3)先化简方程,再依据等式的性质,方程两边同时减
,最后同时除以
求解,
(4)先化简方程,再依据等式的性质,方程两边同时除以
求解,
(5)先化简方程,再依据等式的性质,方程两边同时除以
求解.
| 1 |
| 4 |
(2)先化简方程,再依据等式的性质,方程两边同时除以
| 9 |
| 20 |
(3)先化简方程,再依据等式的性质,方程两边同时减
| 1 |
| 6 |
| 3 |
| 5 |
(4)先化简方程,再依据等式的性质,方程两边同时除以
| 7 |
| 12 |
(5)先化简方程,再依据等式的性质,方程两边同时除以
| 8 |
| 9 |
解答:解:(1)
x-
x=
×
x=
x÷
=
÷
x=
;
(2)
x+
x=
x=
x÷
=
÷
x=2;
(3)
x+
×
=
x+
-
=
-
x÷
=
÷
x=1
;
(4)x×(
+
)=
x=
x÷
=
÷
x=
;
(5)x-
x=48÷
x=480
x÷
=480÷
x=540.
| 1 |
| 2 |
| 1 |
| 4 |
| 3 |
| 16 |
| 2 |
| 3 |
| 1 |
| 4 |
| 1 |
| 8 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 8 |
| 1 |
| 4 |
x=
| 1 |
| 2 |
(2)
| 1 |
| 4 |
| 1 |
| 5 |
| 9 |
| 10 |
| 9 |
| 20 |
| 9 |
| 10 |
| 9 |
| 20 |
| 9 |
| 20 |
| 9 |
| 10 |
| 9 |
| 20 |
x=2;
(3)
| 3 |
| 5 |
| 1 |
| 10 |
| 5 |
| 3 |
| 5 |
| 6 |
| 3 |
| 5 |
| 1 |
| 6 |
| 1 |
| 6 |
| 5 |
| 6 |
| 1 |
| 6 |
| 3 |
| 5 |
| 3 |
| 5 |
| 2 |
| 3 |
| 3 |
| 5 |
x=1
| 1 |
| 8 |
(4)x×(
| 1 |
| 3 |
| 1 |
| 4 |
| 7 |
| 40 |
| 7 |
| 12 |
| 7 |
| 40 |
| 7 |
| 12 |
| 7 |
| 12 |
| 7 |
| 40 |
| 7 |
| 12 |
x=
| 3 |
| 10 |
(5)x-
| 1 |
| 9 |
| 1 |
| 10 |
| 8 |
| 9 |
| 8 |
| 9 |
| 8 |
| 9 |
| 8 |
| 9 |
x=540.
点评:本题考查知识点:依据等式的性质解方程,解方程时注意对齐等号.
练习册系列答案
相关题目