题目内容
8.A、B都是不为0的自然数,并且$\frac{A}{11}$+$\frac{B}{3}$=$\frac{17}{33}$,那么A+B=3.分析 此题先把$\frac{A}{11}$+$\frac{B}{3}$通分,通过计算,变为$\frac{3A+11B}{33}$,进而列出等量关系式3A+11B=17;然后根据A和B都是自然数,得解.
解答 解:$\frac{A}{11}$+$\frac{B}{3}$=$\frac{3A}{33}$+$\frac{11B}{33}$=$\frac{3A+11B}{33}$=$\frac{17}{33}$
所以3A+11B=17,
因为A和B都是自然数,
因此A=2,B=1,
所以A+B=3.
故答案为:3.
点评 此题考查了用字母表示数,明确3A+11B=17,是解答此题的关键.
练习册系列答案
相关题目
3.把5克盐放入20克水中,盐占盐水的( )
| A. | 20% | B. | 25% | C. | 75% | D. | 80% |