题目内容
13×
+
+…
(共有m个
)
+
+
+
+
+9
+99
+999
+9999
+1
100+99-98-97+96+95-94-93+…+4+3-2-1.
| 11 |
| 12 |
| B |
| A |
| B |
| A |
| B |
| A |
| B |
| A |
| 1 |
| 1×3 |
| 1 |
| 3×5 |
| 1 |
| 5×7 |
| 1 |
| 7×9 |
| 1 |
| 9×11 |
| 4 |
| 5 |
| 4 |
| 5 |
| 4 |
| 5 |
| 4 |
| 5 |
| 4 |
| 5 |
100+99-98-97+96+95-94-93+…+4+3-2-1.
分析:(1)根据乘法分配律进行计算;
(2)共有m个
相加,也就是
×m,然后再进一步计算;
(3)根据分数的拆项进行计算;
(4)把带分数写成整数加真分数的形式,然后再根据加法交换律和结合律进行计算;
(5)从开始每4项结合为一组,共有25组,每一组结果都是4,然后再进一步计算即可.
(2)共有m个
| B |
| A |
| B |
| A |
(3)根据分数的拆项进行计算;
(4)把带分数写成整数加真分数的形式,然后再根据加法交换律和结合律进行计算;
(5)从开始每4项结合为一组,共有25组,每一组结果都是4,然后再进一步计算即可.
解答:解:(1)13×
,
=(12+1)×
,
=12×
+1×
,
=1+
,
=1
;
(2)
+
+…
(共有m个
),
=
×m,
=
;
(3)
+
+
+
+
,
=
×(1-
)+
×(
-
)+
×(
-
)+
×(
-
)+
×(
-
),
=
×(1-
+
-
+
-
+
-
+
-
),
=
×(1-
),
=
×
,
=
;
(4)
+9
+99
+999
+9999
+1,
=
+(9+
)+(99+
)+(999+
)+(9999+
)+1,
=
×5+(9+99+999+9999)+1,
=4+(9+99+999+9999)+1,
=(1+9)+(1+99)+(1+999)+(1+9999)+1,
=10+100+1000+10000+1,
=11111;
(5)100+99-98-97+96+95-94-93+…+4+3-2-1,
=(100+99-98-97)+(96+95-94-93)+…+(4+3-2-1),
=4+4+…+4,
=4×25,
=100.
| 11 |
| 12 |
=(12+1)×
| 11 |
| 12 |
=12×
| 11 |
| 12 |
| 11 |
| 12 |
=1+
| 11 |
| 12 |
=1
| 11 |
| 12 |
(2)
| B |
| A |
| B |
| A |
| B |
| A |
| B |
| A |
=
| B |
| A |
=
| mB |
| A |
(3)
| 1 |
| 1×3 |
| 1 |
| 3×5 |
| 1 |
| 5×7 |
| 1 |
| 7×9 |
| 1 |
| 9×11 |
=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 2 |
| 1 |
| 7 |
| 1 |
| 9 |
| 1 |
| 2 |
| 1 |
| 9 |
| 1 |
| 11 |
=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 7 |
| 1 |
| 9 |
| 1 |
| 9 |
| 1 |
| 11 |
=
| 1 |
| 2 |
| 1 |
| 11 |
=
| 1 |
| 2 |
| 10 |
| 11 |
=
| 5 |
| 11 |
(4)
| 4 |
| 5 |
| 4 |
| 5 |
| 4 |
| 5 |
| 4 |
| 5 |
| 4 |
| 5 |
=
| 4 |
| 5 |
| 4 |
| 5 |
| 4 |
| 5 |
| 4 |
| 5 |
| 4 |
| 5 |
=
| 4 |
| 5 |
=4+(9+99+999+9999)+1,
=(1+9)+(1+99)+(1+999)+(1+9999)+1,
=10+100+1000+10000+1,
=11111;
(5)100+99-98-97+96+95-94-93+…+4+3-2-1,
=(100+99-98-97)+(96+95-94-93)+…+(4+3-2-1),
=4+4+…+4,
=4×25,
=100.
点评:根据题意,找准所运用的运算定律,然后再进一步解答即可.
练习册系列答案
相关题目