题目内容
计算2012×(1+
+
+…+
)-[1+(1+
)+(1+
+
)+…(1+
+
+…+
)]=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2011 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2011 |
2011
2011
.分析:根据乘法的分配律把2012×(1+
+
+…+
)展开,把[1+(1+
)+(1+
+
)+…(1+
+
+…+
)]中的小括号去掉可得到2011×1+
+
+…+
,再根据减法的性质,加法的交换和结合律简算.
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2011 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2011 |
| 2010 |
| 2 |
| 2009 |
| 3 |
| 1 |
| 2011 |
解答:解:2012×(1+
+
+…+
)-[1+(1+
)+(1+
+
)+…(1+
+
+…+
)],
=2012+
+
+
+…+
-(1+
+1+
+
+…1+
+
+…+
),
=2012+
+
+
+…+
-(2011×1+
+
+…+
),
=2012+
+
+…+
-2011-
-
-…-
,
=(2012-2011)+(
-
)+(
-
)+…+(+
-
),
=1+1+1+1+…1 (分母从1到2011,一共2011个),
=2011.
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2011 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2011 |
=2012+
| 2012 |
| 2 |
| 2012 |
| 3 |
| 2012 |
| 4 |
| 2012 |
| 2011 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2011 |
=2012+
| 2012 |
| 2 |
| 2012 |
| 3 |
| 2012 |
| 4 |
| 2012 |
| 2011 |
| 2010 |
| 2 |
| 2009 |
| 3 |
| 1 |
| 2011 |
=2012+
| 2012 |
| 2 |
| 2012 |
| 3 |
| 2012 |
| 2011 |
| 2010 |
| 2 |
| 2009 |
| 3 |
| 1 |
| 2011 |
=(2012-2011)+(
| 2012 |
| 2 |
| 2010 |
| 2 |
| 2012 |
| 3 |
| 2009 |
| 3 |
| 2012 |
| 2011 |
| 1 |
| 2011 |
=1+1+1+1+…1 (分母从1到2011,一共2011个),
=2011.
点评:考查了学生灵活巧算的能力,此题的关键是把[1+(1+
)+(1+
+
)+…(1+
+
+…+
)]中的小括号去掉可得到2011×1+
+
+…+
.
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2011 |
| 2010 |
| 2 |
| 2009 |
| 3 |
| 1 |
| 2011 |
练习册系列答案
相关题目