题目内容
7.计算,能简算的要简算:| 3×($\frac{2}{15}$+$\frac{1}{12}$)-$\frac{1}{4}$ | $\frac{5}{6}$÷$\frac{5}{12}$+$\frac{7}{15}$×$\frac{3}{7}$ | $\frac{8}{17}$÷9+$\frac{1}{9}$×$\frac{8}{17}$ |
| ($\frac{1}{2}$-$\frac{3}{8}$)÷$\frac{3}{4}$ | ($\frac{5}{12}$-$\frac{3}{5}$)-($\frac{2}{5}$-$\frac{7}{12}$) | $\frac{4}{9}$÷〔$\frac{5}{6}$-($\frac{1}{6}$+$\frac{1}{3}$)〕 |
分析 ①先用乘法分配律计算算式的前面的数,算到加上$\frac{1}{4}$减去$\frac{1}{4}$就正好抵消.
②先算乘除法,再算加法.
③把除法变成乘法,再用乘法分配律计算.
④先算减法再算除法.
⑤根据a-(b-c)=a-b+c进行计算,再先算同分母的分数,再用a-(b+c)=a-b-c进行计算.
⑥先算加法,再算减法,最后算除法.
解答 解:①$3×(\frac{2}{15}+\frac{1}{12})-\frac{1}{4}$
=$3×\frac{2}{15}+3×\frac{1}{12}-\frac{1}{4}$
=$\frac{2}{5}+\frac{1}{4}-\frac{1}{4}$
=$\frac{2}{5}$
②$\frac{5}{6}$÷$\frac{5}{12}$+$\frac{7}{15}$×$\frac{3}{7}$
=$\frac{5}{6}$×$\frac{12}{5}$+$\frac{1}{5}$
=2+$\frac{1}{5}$
=$2\frac{1}{5}$
③$\frac{8}{17}$÷9+$\frac{1}{9}$×$\frac{8}{17}$
=($\frac{1}{9}+\frac{1}{9}$)×$\frac{8}{17}$
=$\frac{2}{9}×\frac{8}{17}$
=$\frac{16}{153}$
④($\frac{1}{2}$-$\frac{3}{8}$)÷$\frac{3}{4}$
=$\frac{1}{8}×\frac{4}{3}$
=$\frac{1}{6}$
⑤($\frac{5}{12}$-$\frac{3}{5}$)-($\frac{2}{5}$-$\frac{7}{12}$)
=$\frac{5}{12}$-$\frac{3}{5}$-$\frac{2}{5}$+$\frac{7}{12}$
=($\frac{5}{12}+\frac{7}{12}$)-($\frac{3}{5}+\frac{2}{5}$)
=1-1
=0
⑥$\frac{4}{9}÷[\frac{5}{6}-(\frac{1}{6}+\frac{1}{3})]$
=$\frac{4}{9}÷[\frac{5}{6}-\frac{1}{2}]$
=$\frac{4}{9}÷\frac{1}{3}$
=$\frac{4}{3}$
点评 脱式计算要观察算式的特点,灵活选用简便方法计算.
| 46×38= | *65×80= | 56×29= |
| 60×37= | 78×65= | 820÷6= |