题目内容
五(2)班某小队为地震灾区捐款,情况如下:
平均每人捐款
| 人数/分 | 1 | 2 | 5 | 2 |
| 每人捐款/元 | 50 | 30 | 20 | 10 |
23
23
元,捐款数的中位数是20
20
.分析:要求平均每人捐款多少元,根据“平均每人捐款钱数×人数=捐款钱数”求出捐款总钱数,然后求出捐款总人数,进而根据“捐款总钱数÷捐款总人数=平均每人捐款钱数”解答即可;
将这些数据个数按照从小到大(或从大到小)的顺序排列,如果有奇数个数,则处于中间的数为中位数;如果有偶数个数,则处于中间的两个数的平均数就是这组数据的中位数.
将这些数据个数按照从小到大(或从大到小)的顺序排列,如果有奇数个数,则处于中间的数为中位数;如果有偶数个数,则处于中间的两个数的平均数就是这组数据的中位数.
解答:解:平均数:
(50+30×2+20×5+10×2)÷(1+2+5+2)
=230÷10
=23(元);
中位数:
将这组数据按照从小到大的顺序排列为:2个10、5个20、2个30、1个50;
数据个数一共有:2+5+2+1=10(个),是偶数个,所以中位数是第5和第6个数的平均数,
即:(20+20)÷2=20(元).
答:平均每人捐款23元,捐款数的中位数是20元.
故答案为:23,20.
(50+30×2+20×5+10×2)÷(1+2+5+2)
=230÷10
=23(元);
中位数:
将这组数据按照从小到大的顺序排列为:2个10、5个20、2个30、1个50;
数据个数一共有:2+5+2+1=10(个),是偶数个,所以中位数是第5和第6个数的平均数,
即:(20+20)÷2=20(元).
答:平均每人捐款23元,捐款数的中位数是20元.
故答案为:23,20.
点评:此题主要考查了求平均数和中位数的方法.
练习册系列答案
相关题目