题目内容
| 1 |
| 2 |
| 3 |
| 22 |
| 5 |
| 23 |
| 7 |
| 24 |
| 199 |
| 2100 |
分析:令s=原式,则两边同时乘
,得到
s,然后s-
s得到一个有规律的数列求和问题,两边同时乘2,即可得解.
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
解答:解:令s=
+
+
+
+…+
,①
则
s=
+
+
+
+…+
+
,②
①-②,得:
s=
+
+
+
+
+…+
-
,
两边同时乘2,得:
s=1+(1+
+
+
+…+
)-
,( 等比数列的首项是1,等比是
,求和)
=1+
-
,
=1+2-
-
,(通分,
=
)
=3-
.
| 1 |
| 2 |
| 3 |
| 22 |
| 5 |
| 23 |
| 7 |
| 24 |
| 199 |
| 2100 |
则
| 1 |
| 2 |
| 1 |
| 22 |
| 3 |
| 23 |
| 5 |
| 24 |
| 9 |
| 25 |
| 197 |
| 2100 |
| 199 |
| 2101 |
①-②,得:
| 1 |
| 2 |
| 1 |
| 2 |
| 2 |
| 22 |
| 2 |
| 23 |
| 2 |
| 24 |
| 2 |
| 25 |
| 2 |
| 2100 |
| 199 |
| 2101 |
两边同时乘2,得:
s=1+(1+
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 298 |
| 199 |
| 2100 |
| 1 |
| 2 |
=1+
1-
| ||
1-
|
| 199 |
| 2100 |
=1+2-
| 1 |
| 298 |
| 199 |
| 2100 |
| 1 |
| 298 |
| 4 |
| 2100 |
=3-
| 203 |
| 2100 |
点评:原式减去原式乘
,得到等比数列,利用等比数列的求和公式,是解决此题的关键.
| 1 |
| 2 |
练习册系列答案
相关题目