题目内容
在1,2,3,…,29,30这30个自然数中,最多能取出多少个数,使取出的这些数中,任意两个不同的数的和都不是7的倍数?
答案:
解析:
解析:
我们把1到30共30个自然数根据除以7所得余数的不同情况分为七组.例如,除以7余1的有1,8,15,22,29这五个数,除以7余2的有2,9,16,23,30五个数,除以7余3的有3,10,17,24四个数,……要使取出的数中任意两个不同的数的和都不是7的倍数,那么能被7整除的数只能取1个,取了除以7余1的数,就不能再取除以7余6的数;取了除以7余2的数,就不能再取除7余5的数;取了除以7余3的数,就不能再取除以7余4的数.为了使取出的个数最多,我们把除以7分别余1、余2、余3的数全部取出来连同1个能被7整除的数,共有5+5+4+1=15(个),所以,最多能取出15个数
练习册系列答案
相关题目