题目内容
计算:(
+
+…+
+…+
+
)-
(
+
+…+
+…+
)=
.
| 1 |
| 1×2007 |
| 1 |
| 2×2006 |
| 1 |
| n×(2008-n) |
| 1 |
| 2006×2 |
| 1 |
| 2007×1 |
| 2007 |
| 2008 |
| 1 |
| 1×2006 |
| 1 |
| 2×2005 |
| 1 |
| n×(2007-n) |
| 1 |
| 2006×1 |
| 1 |
| 2015028 |
| 1 |
| 2015028 |
分析:此题根据前边括号与后边括号的特点,将它们进行变形,使之变化成乘法分配律的应用形式,即可进行巧算.
解答:解:(
+
+…+
+…+
+
)-
(
+
+…+
+…+
)
=
×(
+
+…+
)-
×
×(
+
+…+
),
=
×【(1+
)+(
+
)+(
+
)+…+(
+1)】-
×【(1+
)+(
+
)+(
+
)+…+(
+1)】,
=
×(1+
+
+
+…+
)-
×(1+
+
+
…+
),
=
×
,
=
.
故答案为:
| 1 |
| 1×2007 |
| 1 |
| 2×2006 |
| 1 |
| n×(2008-n) |
| 1 |
| 2006×2 |
| 1 |
| 2007×1 |
| 2007 |
| 2008 |
| 1 |
| 1×2006 |
| 1 |
| 2×2005 |
| 1 |
| n×(2007-n) |
| 1 |
| 2006×1 |
=
| 1 |
| 2008 |
| 2008 |
| 1×2007 |
| 2008 |
| 2×2006 |
| 2008 |
| 2007×1 |
| 2007 |
| 2008 |
| 1 |
| 2007 |
| 2007 |
| 1×2006 |
| 2007 |
| 2×2005 |
| 2007 |
| 2006×1 |
=
| 1 |
| 2008 |
| 1 |
| 2007 |
| 1 |
| 2 |
| 1 |
| 2006 |
| 1 |
| 3 |
| 1 |
| 2005 |
| 1 |
| 2007 |
| 1 |
| 2008 |
| 1 |
| 2006 |
| 1 |
| 2 |
| 1 |
| 2005 |
| 1 |
| 3 |
| 1 |
| 2004 |
| 1 |
| 2006 |
=
| 2 |
| 2008 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2007 |
| 2 |
| 2008 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2006 |
=
| 1 |
| 1004 |
| 1 |
| 2007 |
=
| 1 |
| 2015028 |
故答案为:
| 1 |
| 2015028 |
点评:此题考查了分数巧算的方法.
练习册系列答案
相关题目