题目内容
计算,把结果写成若干个分母是质数的既约分数之和:
+
-
+
-
=
+
+
.
| 1 |
| 9 |
| 5 |
| 9 |
| 1 |
| 19 |
| 1 |
| 95 |
| 1 |
| 1995 |
| 4 |
| 7 |
| 1 |
| 19 |
| 4 |
| 7 |
| 1 |
| 19 |
分析:据题意可知,本题要先求出算式的值是多少,原式=
-
=
-
=
-
=
=
,将值的分母分解质数:133=7×19,然后再据分解的质因数及值的分子求出符合要求的既约分数:令
=
+
,则19×a+7×b=83,,
+
<1,易见a=4,b=1,符合要求.
| 6 |
| 9 |
| 105-21+1 |
| 1995 |
| 2 |
| 3 |
| 85 |
| 1995 |
| 2 |
| 3 |
| 17 |
| 399 |
| 249 |
| 399 |
| 83 |
| 133 |
| 83 |
| 133 |
| a |
| 7 |
| b |
| 19 |
| a |
| 7 |
| b |
| 19 |
解答:解:
+
-
+
-
=
-
,
=
-
,
=
;
133=7×19,
令
=
+
,
则19×a+7×b=83,易见a=4,b=1,符合要求.
所以,
+
-
+
-
=
+
.
故答案为:
+
.
| 1 |
| 9 |
| 5 |
| 9 |
| 1 |
| 19 |
| 1 |
| 95 |
| 1 |
| 1995 |
=
| 6 |
| 9 |
| 105-21+1 |
| 1995 |
=
| 2 |
| 3 |
| 17 |
| 399 |
=
| 83 |
| 133 |
133=7×19,
令
| 83 |
| 133 |
| a |
| 7 |
| b |
| 19 |
则19×a+7×b=83,易见a=4,b=1,符合要求.
所以,
| 1 |
| 9 |
| 5 |
| 9 |
| 1 |
| 19 |
| 1 |
| 95 |
| 1 |
| 1995 |
| 4 |
| 7 |
| 1 |
| 19 |
故答案为:
| 4 |
| 7 |
| 1 |
| 19 |
点评:完成本题的关健是将分母分解质因数,然后在分母的基础上求出符合题意的分子.
练习册系列答案
相关题目