题目内容
解方程.
x-
|
|
|
x-
|
分析:(1)依据等式的性质,方程两边同时加
求解,
(2)先化简方程,再依据等式的性质,方程两边同时减
求解,
(3)依据等式的性质,方程两边同时减
求解,
(4)先化简方程,再依据等式的性质,方程两边同时加
求解.
| 4 |
| 15 |
(2)先化简方程,再依据等式的性质,方程两边同时减
| 13 |
| 20 |
(3)依据等式的性质,方程两边同时减
| 5 |
| 6 |
(4)先化简方程,再依据等式的性质,方程两边同时加
| 5 |
| 8 |
解答:解:(1)x-
=
x-
+
=
+
x=
;
(2)
+
+x=
+x-
=
-
x=
;
(3)
+x=
+x-
=
-
x=
;
(4)x-
-
=
x-
=
x-
+
=
+
x=1
.
| 4 |
| 15 |
| 7 |
| 20 |
x-
| 4 |
| 15 |
| 4 |
| 15 |
| 7 |
| 20 |
| 4 |
| 15 |
x=
| 37 |
| 60 |
(2)
| 1 |
| 4 |
| 2 |
| 5 |
| 9 |
| 10 |
| 13 |
| 20 |
| 13 |
| 20 |
| 9 |
| 10 |
| 13 |
| 20 |
x=
| 1 |
| 4 |
(3)
| 5 |
| 6 |
| 7 |
| 8 |
| 5 |
| 6 |
| 5 |
| 6 |
| 7 |
| 8 |
| 5 |
| 6 |
x=
| 1 |
| 24 |
(4)x-
| 3 |
| 8 |
| 1 |
| 4 |
| 7 |
| 8 |
x-
| 5 |
| 8 |
| 7 |
| 8 |
x-
| 5 |
| 8 |
| 5 |
| 8 |
| 7 |
| 8 |
| 5 |
| 8 |
x=1
| 1 |
| 2 |
点评:等式的性质是解方程的依据,解方程时注意:(1)方程能化简先化简,(2)等号要对齐.
练习册系列答案
相关题目