题目内容

一支较长队伍的人作一、二、三报数,报一、二的出去,报三的留下,重报一、二、三,再按规则报一、二的出去,报三的留下,如此经4次报数,留下10人.问,留下的第1人和第10人在原队伍中分别是第
81
81
号和
810
810
号.
分析:先按顺序给队伍中每个人编上号码,再按题目要求划去在报数中出去的人,求出第1次报数后留下的人的号码,
 即:3×1、3×2、3×3、3×4、3×5、3×6…,
在尝试中观察,探索规律,可知第4次报数后,留下来的人中第1人和第10人的号码为:34×1=81;34×10=810;
从而解决问题.
解答:解:先按顺序给队伍中每个人编上号码如下:
1、2、3、4、5、6、7、8、9、10、11、12、13、14、15…,
按题目要求划去在报数中出去的人,第1次报数后留下的人为:3、6、9、12、15、18、21、24、27、30…,
即:3×1、3×2、3×3、3×4、3×5、3×6…,
再按题目要求划去在报数中出去的人,第2次报数后留下的人为:
9、18、27、36…
即:32×1、32×2、32×3、32×4、32×5、32×6…
由以上规律,可知第4次报数后,留下来的人中第1人和第10人的号码为:34×1=81;34×10=810.
所以,这两人在原队伍中是第81人和第810人;
故答案为:81,810.
点评:此题考查了学生在尝试中观察、探索规律的能力.此题有一定难度,要细细分析,方可得出答案.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网