题目内容

在长方形、正方形、平行四边形和圆中,当它们的周长相等时,
 
面积最大,
 
的面积最小.
考点:面积及面积的大小比较
专题:平面图形的认识与计算
分析:要比较周长相等的正方形、平行四边形、长方形和圆形,谁的面积最大,谁面积最小,可以先假设这几种图形的周长是多少,再利用这几种图形的面积公式,分别计算出它们的面积,最后比较这几种图形面积的大小.
解答: 解:假设长方形、正方形和圆的周长为12.56厘米;
长方形的长宽可以为3.13厘米、3.15厘米,
长方形的面积=3.13×3.15=9.8595(平方厘米);
正方形的边长为3.14厘米,
正方形的面积=3.14×3.14=9.8596(平方厘米);
圆的面积=3.14×(12.56÷3.14÷2)2=12.56(平方厘米);
周长相等的长方形和平行四边形,长方形的面积大于平行四边形的面积;
从上面可以看出圆的面积最大,由此我们可以得出一般结论:周长相等的平行四边行、长方形、正方形和圆,面积最大的是圆,平行四边形的面积最小;
故答案为:圆,平行四边形.
点评:我们可以把周长相等的平行四边行、长方形、正方形和圆,面积最大的是圆当做一个结论记住,快速去做一些选择题或判断题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网