题目内容
(能简便的要简算).
(1)
+
+
+
+…+
(2)
+
+
+
+
+
(3)2006÷
(4)97×2010-96×2011
(5)(2890+
+
+
)÷(
+
+
).
(1)
| 1 |
| 2001 |
| 2 |
| 2001 |
| 3 |
| 2001 |
| 4 |
| 2001 |
| 2001 |
| 2001 |
(2)
| 1 |
| 2 |
| 1 |
| 6 |
| 1 |
| 12 |
| 1 |
| 20 |
| 1 |
| 30 |
| 1 |
| 42 |
(3)2006÷
| 2007 |
| 2008 |
(4)97×2010-96×2011
(5)(2890+
| 5 |
| 6 |
| 7 |
| 8 |
| 7 |
| 10 |
| 5 |
| 6 |
| 7 |
| 8 |
| 7 |
| 10 |
分析:(1)此题属于同分母分数的加法计算,只把分子相加,分母不变.分母相加时,运用高斯求和公式简算,然后通过约分,求出结果;
(2)通过观察,每个分数都可以拆成两个分数相减的形式,然后通过分数加、减抵消的方法,求得结果;
(3)把2006写成(2007-1),把除法改为乘法,运用乘法分配律简算;
(4)把97看做96+1,运用乘法分配律简算;
(5)运用除法的性质简算.
(2)通过观察,每个分数都可以拆成两个分数相减的形式,然后通过分数加、减抵消的方法,求得结果;
(3)把2006写成(2007-1),把除法改为乘法,运用乘法分配律简算;
(4)把97看做96+1,运用乘法分配律简算;
(5)运用除法的性质简算.
解答:解:(1)
+
+
+
+…+
,
=
,
=
,
=1001;
(2)
+
+
+
+
+
,
=
-
+
-
+
-
+
-
+
-
+
-
,
=1-
,
=
;
(3)2006÷
,
=(2007-1)×
,
=2007×
-
,
=2008-
,
=2008-(1+
),
=2007-
,
=2006
;
(4)97×2010-96×2011,
=(96+1)×2010-96×2011,
=96×2010+2010-96×2011,
=2010-(2011-2010)×96,
=2010-96,
=1914;
(5)(2890+
+
+
)÷(
+
+
),
=2890÷(
+
+
)+1,
=2890÷(
+
+
)+1,
=2890×120÷(100+105+84)+1,
=2890×120÷289+1,
=2890÷289×120+1,
=10×120+1,
=1201.
| 1 |
| 2001 |
| 2 |
| 2001 |
| 3 |
| 2001 |
| 4 |
| 2001 |
| 2001 |
| 2001 |
=
| (1+2001)×2001÷2 |
| 2001 |
=
| 2002×2001 |
| 2001×2 |
=1001;
(2)
| 1 |
| 2 |
| 1 |
| 6 |
| 1 |
| 12 |
| 1 |
| 20 |
| 1 |
| 30 |
| 1 |
| 42 |
=
| 1 |
| 1 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 6 |
| 1 |
| 6 |
| 1 |
| 7 |
=1-
| 1 |
| 7 |
=
| 6 |
| 7 |
(3)2006÷
| 2007 |
| 2008 |
=(2007-1)×
| 2008 |
| 2007 |
=2007×
| 2008 |
| 2007 |
| 2008 |
| 2007 |
=2008-
| 2008 |
| 2007 |
=2008-(1+
| 1 |
| 2007 |
=2007-
| 1 |
| 2007 |
=2006
| 2006 |
| 2007 |
(4)97×2010-96×2011,
=(96+1)×2010-96×2011,
=96×2010+2010-96×2011,
=2010-(2011-2010)×96,
=2010-96,
=1914;
(5)(2890+
| 5 |
| 6 |
| 7 |
| 8 |
| 7 |
| 10 |
| 5 |
| 6 |
| 7 |
| 8 |
| 7 |
| 10 |
=2890÷(
| 5 |
| 6 |
| 7 |
| 8 |
| 7 |
| 10 |
=2890÷(
| 100 |
| 120 |
| 105 |
| 120 |
| 84 |
| 120 |
=2890×120÷(100+105+84)+1,
=2890×120÷289+1,
=2890÷289×120+1,
=10×120+1,
=1201.
点评:完成此题,应注意观察,运用所学的定律或性质以及运算技巧,进行巧妙解答.
练习册系列答案
相关题目