题目内容
计算:
(1)
(2)1+
+
+
…+
.
(1)
| 362+548×361 |
| 362×548-186 |
(2)1+
| 1 |
| 1+2 |
| 1 |
| 1+2+3 |
| 1 |
| 1+2+3+4 |
| 1 |
| 1+2+3+…+100 |
分析:(1)分母根据乘法分配律变形为361×548+548-186=361×548+362,可得分子与分母的大小相等,从而求解;
(2)根据高斯求和公式可得原式=
+
+
+
+…+
,再进行拆分,抵消法即可求解.
(2)根据高斯求和公式可得原式=
| 2 |
| 1×2 |
| 2 |
| 2×3 |
| 2 |
| 3×4 |
| 2 |
| 4×5 |
| 2 |
| 100×101 |
解答:解:(1)
,
=
,
=
,
=1;
(2)1+
+
+
…+
,
=
+
+
+
+…+
,
=2×(1-
+
-
+
-
+
-
+…+
-
),
=2×(1-
)
=2×
,
=
.
| 362+548×361 |
| 362×548-186 |
=
| 362+548×361 |
| 361×548+548-186 |
=
| 362+548×361 |
| 361×548+362 |
=1;
(2)1+
| 1 |
| 1+2 |
| 1 |
| 1+2+3 |
| 1 |
| 1+2+3+4 |
| 1 |
| 1+2+3+…+100 |
=
| 2 |
| 1×2 |
| 2 |
| 2×3 |
| 2 |
| 3×4 |
| 2 |
| 4×5 |
| 2 |
| 100×101 |
=2×(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 100 |
| 1 |
| 101 |
=2×(1-
| 1 |
| 101 |
=2×
| 100 |
| 101 |
=
| 200 |
| 101 |
点评:考查了分数的巧算.如果分数的分母为两个连续自然数的乘积,可以把这个分数拆分成两个分数相减的形式,然后通过加减相抵消的方法,求得结果.
练习册系列答案
相关题目