题目内容
解方程
|
17-
|
|
考点:方程的解和解方程
专题:简易方程
分析:(1)原式变为
x=
,根据等式的性质,两边同乘
即可;
(2)根据等式的性质,两边同加上
x,得5+
x=17,两边同减去5,再同乘
即可;
(3)原式变为
-
x=
,根据等式的性质,两边同加上
x,得
+
x=
,两边同减去
,再同乘2即可.
| 5 |
| 6 |
| 3 |
| 4 |
| 6 |
| 5 |
(2)根据等式的性质,两边同加上
| 6 |
| 5 |
| 6 |
| 5 |
| 5 |
| 6 |
(3)原式变为
| 1 |
| 5 |
| 1 |
| 2 |
| 1 |
| 20 |
| 1 |
| 2 |
| 1 |
| 20 |
| 1 |
| 2 |
| 1 |
| 5 |
| 1 |
| 20 |
解答:
解:(1)
x+
x=
x=
x×
=
×
x=
(2)17-
x=5
17-
x+
x=5+
x
5+
x=17
5+
x-5=17-5
x=12
x×
=12×
x=10
(3)
×
-
x=
-
x=
-
x+
x=
+
x
+
x=
+
x-
=
-
x=
x×2=
×2
x=
| 1 |
| 2 |
| 1 |
| 3 |
| 3 |
| 4 |
| 5 |
| 6 |
| 3 |
| 4 |
| 5 |
| 6 |
| 6 |
| 5 |
| 3 |
| 4 |
| 6 |
| 5 |
x=
| 9 |
| 10 |
(2)17-
| 6 |
| 5 |
17-
| 6 |
| 5 |
| 6 |
| 5 |
| 6 |
| 5 |
5+
| 6 |
| 5 |
5+
| 6 |
| 5 |
| 6 |
| 5 |
| 6 |
| 5 |
| 5 |
| 6 |
| 5 |
| 6 |
x=10
(3)
| 4 |
| 5 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 20 |
| 1 |
| 5 |
| 1 |
| 2 |
| 1 |
| 20 |
| 1 |
| 5 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 20 |
| 1 |
| 2 |
| 1 |
| 20 |
| 1 |
| 2 |
| 1 |
| 5 |
| 1 |
| 20 |
| 1 |
| 2 |
| 1 |
| 20 |
| 1 |
| 5 |
| 1 |
| 20 |
| 1 |
| 2 |
| 3 |
| 20 |
| 1 |
| 2 |
| 3 |
| 20 |
x=
| 3 |
| 10 |
点评:此题考查了根据等式的性质解方程,即等式两边同加上、同减去、同乘上或同除以一个不为0的数,等式仍相等.同时注意“=”上下要对齐.
练习册系列答案
相关题目