题目内容

解方程
1
2
x+
1
3
x=
3
4
         
17-
6
5
x=5         
4
5
×
1
4
-
1
2
x=
1
20
考点:方程的解和解方程
专题:简易方程
分析:(1)原式变为
5
6
x=
3
4
,根据等式的性质,两边同乘
6
5
即可;
(2)根据等式的性质,两边同加上
6
5
x,得5+
6
5
x=17,两边同减去5,再同乘
5
6
即可;
(3)原式变为
1
5
-
1
2
x=
1
20
,根据等式的性质,两边同加上
1
2
x,得
1
20
+
1
2
x=
1
5
,两边同减去
1
20
,再同乘2即可.
解答: 解:(1)
1
2
x+
1
3
x=
3
4
  
           
5
6
x=
3
4
  
       
5
6
6
5
=
3
4
×
6
5
  
             x=
9
10


(2)17-
6
5
x=5
 17-
6
5
x+
6
5
x=5+
6
5
x
      5+
6
5
x=17
    5+
6
5
x-5=17-5
       
6
5
x=12
    
6
5
5
6
=12×
5
6

          x=10

(3)
4
5
×
1
4
-
1
2
x=
1
20

       
1
5
-
1
2
x=
1
20

   
1
5
-
1
2
x+
1
2
x=
1
20
+
1
2
x
      
1
20
+
1
2
x=
1
5

   
1
20
+
1
2
x-
1
20
=
1
5
-
1
20

         
1
2
x=
3
20

      
1
2
x×2=
3
20
×2
           x=
3
10
点评:此题考查了根据等式的性质解方程,即等式两边同加上、同减去、同乘上或同除以一个不为0的数,等式仍相等.同时注意“=”上下要对齐.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网