题目内容

观察并填空
1
2
=
1
1×2
=1-
1
2

1
6
=
1
2×3
=
1
2
-
1
3

1
12
=
1
3×4
=
1
3
-
1
4

1
20
=
1
4×5
=(  )-(  )
1
n(n+1)
(  )-(  )
一般地:
1
1×2
+
1
2×3
+
1
3×4
+…+
1
n(n+1)
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
+…+
1
n
-
1
n+1
=
n
n+1

依据以上规律:
计算:1
1
2
+2
1
6
+3
1
12
+4
1
20
+5
1
30
+6
1
42
+7
1
56
+8
1
72
+9
1
90
1
1
2
+2
1
6
+3
1
12
+4
1
20
+5
1
30
+6
1
42
+7
1
56
+8
1
72
+9
1
90

=(1+2+3+4+5+6+7+8+9)+(
1
2
+
1
6
+
1
12
+
1
20
+
1
30
+
1
42
+
1
56
+
1
72
+
1
90
),
=(1+9)×9÷2+(1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
+
1
4
-
1
5
+
1
5
-
1
6
+
1
6
-
1
7
+
1
7
-
1
8
+
1
8
-
1
9
+
1
9
-
1
10
),
=45+(1-
1
10
),
=45+
9
10

=45
9
10
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网