题目内容
计算:
+
+
+…+
=
| 1+2×1 |
| 500 |
| 3+2×2 |
| 500 |
| 5+2×3 |
| 500 |
| 999+2×500 |
| 500 |
1001
1001
.分析:通过观察,可把原式变为(1+2×1+3+2×2+5+2×3+…+999+2×500)×
,然后把括号内的1、3、5…999加在一起,把乘法算式加在一起,运用高斯求和公式和运算定律,简算即可.
| 1 |
| 500 |
解答:解:
+
+
+…+
,
=(1+2×1+3+2×2+5+2×3+…+999+2×500)×
,
=[(1+3+5+…+999)+2×(1+2+3+…+500)]×
,
=[(1+999)×(1+999)÷2÷2+2×(1+500)×500÷2]×
,
=[250000+501×500]×
,
=[500+501]×500×
,
=1001.
故答案为:1001.
| 1+2×1 |
| 500 |
| 3+2×2 |
| 500 |
| 5+2×3 |
| 500 |
| 999+2×500 |
| 500 |
=(1+2×1+3+2×2+5+2×3+…+999+2×500)×
| 1 |
| 500 |
=[(1+3+5+…+999)+2×(1+2+3+…+500)]×
| 1 |
| 500 |
=[(1+999)×(1+999)÷2÷2+2×(1+500)×500÷2]×
| 1 |
| 500 |
=[250000+501×500]×
| 1 |
| 500 |
=[500+501]×500×
| 1 |
| 500 |
=1001.
故答案为:1001.
点评:完成此题,应注意观察,根据数字特点,运用运算技巧或运算定律,巧妙解答.
练习册系列答案
相关题目