题目内容
求图中阴影部分的面积.(图中的三角形是等腰三角形,π=3.14)

考点:组合图形的面积
专题:平面图形的认识与计算
分析:观察图形可知,图中两个扇形的半径是10÷2=5,且两个扇形内部的两个白色三角形合起来可以拼成一个对角线长是5的正方形,则可以得出:阴影部分面积等于半圆的面积减去一个正方形的面积,半圆的半径等于5,正方形的面积等于5×5÷2=12.5,据此即可解答问题.
解答:
解:根据题干分析可得:10÷2=5
3.14×52÷2-5×5÷2
=39.25-12.5
=26.75
答:阴影部分的面积是26.75.
3.14×52÷2-5×5÷2
=39.25-12.5
=26.75
答:阴影部分的面积是26.75.
点评:此题考查了组合图形的面积的计算方法,关键是明确阴影部分的面积等于哪几个图形的面积的和或差.
练习册系列答案
相关题目
下面各组数中,第一个数是第二个数的倍数的数是( )
| A、18和8 | B、51和17 |
| C、65和15 | D、3和69 |
被除数和除数都不是小数,商( )小数.
| A、一定是 | B、可能是 |
| C、不可能是 | D、无法确定 |