题目内容
希望小学四年级有50名学生,有26人参加乒乓比赛,21人参加篮球比赛,两项比赛都不参加的有17人.两项比赛都参加的有 人.
考点:容斥原理
专题:传统应用题专题
分析:先求出参加乒乓球比赛、篮球赛和两项都不参加一共有多少人,这样就比总人数多计算出两项都参加的人数,所以减去总人数就是两项都参加的人数.
解答:
解:26+21+17-50
=64-50
=14(人)
答:两项比赛都参加的有14人.
故答案为:14.
=64-50
=14(人)
答:两项比赛都参加的有14人.
故答案为:14.
点评:本题考查容斥原理:A类元素数+B类元素数-总元素数=既A又B元素数.
练习册系列答案
相关题目
一个国家的居民不是骑士就是无赖,骑士不说谎,无赖永远说谎.我们遇到该国A与B两位居民,B对我们说:“A和我不同,一个是骑士,一个是无赖.”请问A是骑士还是无赖?( )
| A、无赖 | B、骑士 |
| C、不清楚 | D、既是骑士又是无赖 |
搭成如图中的立体图形一共有( ) 个小正方体.

| A、4 | B、5 | C、6 | D、7 |