题目内容
9999×10001-9996×10002=
20007
20007
.分析:根据整数乘法的分配律进行简算即可.
解答:解:9999×10001-9996×10002,
=9999×(10002-1)-9996×10002,
=9999×10002-9999×1-9996×10002,
=9999×10002-9999-9996×10002,
=(9999-9996)×10002-(10002-3),
=3×10002-1002+3,
=(3-1)×10002+3,
=2×10002+3
=20004+3,
=20007.
故答案为:20007.
=9999×(10002-1)-9996×10002,
=9999×10002-9999×1-9996×10002,
=9999×10002-9999-9996×10002,
=(9999-9996)×10002-(10002-3),
=3×10002-1002+3,
=(3-1)×10002+3,
=2×10002+3
=20004+3,
=20007.
故答案为:20007.
点评:解答此类问题,根据数字的特点,灵活运用运算定律或性质进行简算.
练习册系列答案
相关题目