题目内容
| 解比例. 3.75:χ=
|
5:
| ||||||||||
|
|
分析:(1)先根据比例的基本性质,把原式转化为
x=
×3.75,再根据等式的性质,在方程两边同时除以
求解,
(2)先根据比例的基本性质,把原式转化为
x=5×
,再根据等式的性质,在方程两边同时除以
求解,
(3)先根据比例的基本性质,把原式转化为3×(x+2)=6×7,再根据等式的性质,在方程两边同时除以3,再同时减去2求解,
(4)先根据比例的基本性质,把原式转化为
x=
×
,再根据等式的性质,在方程两边同时除以
求解.
| 1 |
| 20 |
| 3 |
| 5 |
| 1 |
| 20 |
(2)先根据比例的基本性质,把原式转化为
| 8 |
| 3 |
| 5 |
| 3 |
| 8 |
| 3 |
(3)先根据比例的基本性质,把原式转化为3×(x+2)=6×7,再根据等式的性质,在方程两边同时除以3,再同时减去2求解,
(4)先根据比例的基本性质,把原式转化为
| 1 |
| 3 |
| 1 |
| 20 |
| 5 |
| 9 |
| 1 |
| 3 |
解答:解:(1)3.75:x=
:
,
x=
×3.75,
x÷
=2.25÷
,
x=45;
(2)5:
=x:
,
x=5×
,
x÷
=
÷
,
x=
;
(3)
=
,
3×(x+2)=6×7,
x+2=42÷3,
x+2=14,
x+2-2=14-2,
x=12;
(4)
:
=
:x,
x=
×
,
x÷
=
÷
,
x=
.
| 1 |
| 20 |
| 3 |
| 5 |
| 1 |
| 20 |
| 3 |
| 5 |
| 1 |
| 20 |
| 1 |
| 20 |
| 1 |
| 20 |
x=45;
(2)5:
| 8 |
| 3 |
| 5 |
| 3 |
| 8 |
| 3 |
| 5 |
| 3 |
| 8 |
| 3 |
| 8 |
| 3 |
| 25 |
| 3 |
| 8 |
| 3 |
x=
| 25 |
| 8 |
(3)
| X+2 |
| 6 |
| 7 |
| 3 |
3×(x+2)=6×7,
x+2=42÷3,
x+2=14,
x+2-2=14-2,
x=12;
(4)
| 1 |
| 3 |
| 1 |
| 20 |
| 5 |
| 9 |
| 1 |
| 3 |
| 1 |
| 20 |
| 5 |
| 9 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 36 |
| 1 |
| 3 |
x=
| 1 |
| 12 |
点评:本题考查了学生根据等式的性质和比例的基本性质解方程的能力.注意等号对齐.
练习册系列答案
相关题目