题目内容
简便计算:
×32
27×
166
÷41
1993÷1993
+
+
+
+
+
2003×200220022002-2002×200320032003
1234+2341+3412+4123
+
+
+…
+
+
+
+
+…+
+
+
+…+
.
| 44 |
| 45 |
27×
| 15 |
| 26 |
166
| 1 |
| 20 |
1993÷1993
| 1993 |
| 1995 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 8 |
| 1 |
| 16 |
| 1 |
| 32 |
| 1 |
| 64 |
2003×200220022002-2002×200320032003
1234+2341+3412+4123
| 1 |
| 2×4 |
| 1 |
| 4×6 |
| 1 |
| 6×8 |
| 1 |
| 48×50 |
| 1 |
| 1×2×3 |
| 1 |
| 2×3×4 |
| 3 |
| 3×4×5 |
| 2 |
| 15 |
| 2 |
| 35 |
| 2 |
| 63 |
| 2 |
| 323 |
| 1 |
| 1+2 |
| 1 |
| 1+2+3 |
| 1 |
| 1+2+3+4 |
| 1 |
| 1+2+3+4+…+50 |
考点:分数的巧算
专题:
分析:(1)(2)通过数字变化,运用乘法分配律简算
(3)166
=164+2
,然后再根据乘法分配律进行简算.
(4)把带分数化为假分数,分子不必算出来,通过约分解决问题.
(5)(9)(10)把每个分数拆成两个分数相减的形式,然后通过加减相互抵消,求得结果.
(6)把200320032003变为2003×100010001,200220022002变为2002×100010001,从而发现减号前后的算式相同,因此得数为0
(7)通过观察,此算式中的数字有一定特点,把原式变为(1111+123)+(2222+119)+(3333+79)+(4444-321),计算即可.
(8)每个分数的分母中的两个因数相差2,因此提出
,把每个分数拆成两个分数相减的形式,进而简算即可
(11)先把分母运用高斯求和公式表示出来,原式变为
+
+
+…+
,再把每个分数拆成两个分数相减的形式,然后通过加减相互抵消,求得结果.
(3)166
| 1 |
| 20 |
| 1 |
| 20 |
(4)把带分数化为假分数,分子不必算出来,通过约分解决问题.
(5)(9)(10)把每个分数拆成两个分数相减的形式,然后通过加减相互抵消,求得结果.
(6)把200320032003变为2003×100010001,200220022002变为2002×100010001,从而发现减号前后的算式相同,因此得数为0
(7)通过观察,此算式中的数字有一定特点,把原式变为(1111+123)+(2222+119)+(3333+79)+(4444-321),计算即可.
(8)每个分数的分母中的两个因数相差2,因此提出
| 1 |
| 2 |
(11)先把分母运用高斯求和公式表示出来,原式变为
| 2 |
| 2×3 |
| 2 |
| 3×4 |
| 2 |
| 4×5 |
| 2 |
| 50×51 |
解答:
解:(1)
×32
=
×32
=(1-
)×32
=31-
=30
(2)27×
=(26+1)×
=26×
+
=15+
=15
(3)166
÷41
=,(164+2
)×
=164×
+2
×
=4+
,
=4
(4)1993÷1993
=1993÷
=1993×
=
(5)
+
+
+
+
+
=1-
+
-
+
-
+…+
-
=1-
=
(6)2003×200220022002-2002×200320032003
=2002×2003×100010001-2003×2002×100010001
=0
(7)1234+2341+3412+4123
=(1111+123)+(2222+119)+(3333+79)+(4444-321)
=1111+2222+3333+4444+(123+119+79-321)
=1111+2222+3333+4444
=1111×(1+2+3+4)
=1111×10
=11110
(8)
+
+
+…
=
×(
-
+
-
+
-
+…+
-
)
=
×(
-
)
=
×
=
(9)
+
+
=
×(
-
+
-
+
-
)
=
×(
-
)
=
×
=
(10)
+
+
+…+
=
-
+
-
+
+…+
-
=
-
=
(11)
+
+
+…+
=
+
+
+…+
=
+
+
+…+
=2×(
-
+
-
+
-
+…+
-
)
=2×(
-
)
=2×
=
| 44 |
| 45 |
=
| 45-1 |
| 45 |
=(1-
| 1 |
| 45 |
=31-
| 32 |
| 45 |
=30
| 13 |
| 45 |
(2)27×
| 15 |
| 26 |
=(26+1)×
| 15 |
| 26 |
=26×
| 15 |
| 26 |
| 15 |
| 26 |
=15+
| 15 |
| 26 |
=15
| 15 |
| 26 |
(3)166
| 1 |
| 20 |
=,(164+2
| 1 |
| 20 |
| 1 |
| 41 |
=164×
| 1 |
| 41 |
| 1 |
| 20 |
| 1 |
| 41 |
=4+
| 1 |
| 20 |
=4
| 1 |
| 20 |
(4)1993÷1993
| 1993 |
| 1995 |
=1993÷
| 1993×1995+1993 |
| 1995 |
=1993×
| 1995 |
| 1993×1996 |
=
| 1995 |
| 1996 |
(5)
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 8 |
| 1 |
| 16 |
| 1 |
| 32 |
| 1 |
| 64 |
=1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 8 |
| 1 |
| 32 |
| 1 |
| 64 |
=1-
| 1 |
| 64 |
=
| 63 |
| 64 |
(6)2003×200220022002-2002×200320032003
=2002×2003×100010001-2003×2002×100010001
=0
(7)1234+2341+3412+4123
=(1111+123)+(2222+119)+(3333+79)+(4444-321)
=1111+2222+3333+4444+(123+119+79-321)
=1111+2222+3333+4444
=1111×(1+2+3+4)
=1111×10
=11110
(8)
| 1 |
| 2×4 |
| 1 |
| 4×6 |
| 1 |
| 6×8 |
| 1 |
| 48×50 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 6 |
| 1 |
| 6 |
| 1 |
| 8 |
| 1 |
| 48 |
| 1 |
| 50 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 50 |
=
| 1 |
| 2 |
| 24 |
| 50 |
=
| 6 |
| 25 |
(9)
| 1 |
| 1×2×3 |
| 1 |
| 2×3×4 |
| 1 |
| 3×4×5 |
=
| 1 |
| 2 |
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 3×4 |
| 1 |
| 4×5 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 20 |
=
| 1 |
| 2 |
| 9 |
| 20 |
=
| 9 |
| 40 |
(10)
| 2 |
| 15 |
| 2 |
| 35 |
| 2 |
| 63 |
| 2 |
| 323 |
=
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 9 |
| 1 |
| 17 |
| 1 |
| 19 |
=
| 1 |
| 3 |
| 1 |
| 19 |
=
| 16 |
| 57 |
(11)
| 1 |
| 1+2 |
| 1 |
| 1+2+3 |
| 1 |
| 1+2+3+4 |
| 1 |
| 1+2+3+4+…+50 |
=
| 1 | ||
|
| 1 | ||
|
| ||
| 2 |
| ||
| 2 |
=
| 2 |
| 2×3 |
| 2 |
| 3×4 |
| 2 |
| 4×5 |
| 2 |
| 50×51 |
=2×(
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 50 |
| 1 |
| 51 |
=2×(
| 1 |
| 2 |
| 1 |
| 50 |
=2×
| 12 |
| 25 |
=
| 24 |
| 25 |
点评:简算的题目,要注意观察,通过数字变形或运用运算技巧,灵活简算.
练习册系列答案
相关题目