题目内容
20.甲乙两车相向开出,当甲行全程的$\frac{1}{4}$时,乙行20千米,当甲到达乙地时,乙还有$\frac{1}{5}$没行,全程多少千米.分析 当甲到达乙地时,乙还有$\frac{1}{5}$没行,将全程当作单位“1”,根据分数减法的意义,此时乙行了全程的1-$\frac{1}{5}$,所以乙车速度是甲车的1-$\frac{1}{5}$,根据分数乘法的意义,当甲行全程的$\frac{1}{4}$时,则乙行了全程的$\frac{1}{4}$×(1-$\frac{1}{5}$),又此时乙行20千米,根据分数除法的意义,用此时乙行的长度除以其占全长的分率,即得全程多少千米.
解答 解:20÷[$\frac{1}{4}$×(1-$\frac{1}{5}$)]
=20÷[$\frac{1}{4}$×$\frac{4}{5}$]
=20$÷\frac{1}{5}$
=100(千米)
答:全程是100千米.
点评 首先根据行驶相同的时间,所行路程比等于速度比求出乙车速度是甲车的几分之几是完成本题的关键.
练习册系列答案
相关题目
11.因为2:4=$\frac{1}{2}$,12.5%:$\frac{1}{4}$=$\frac{1}{2}$,所以2:4和12.5%:$\frac{1}{4}$可以组成比例,这时根据( )判断的.
| A. | 比的意义 | B. | 比的基本性质 | C. | 比例的意义 | D. | 比例的基本性质 |
19.
| 直接写出得数. 4×13= | 40×13= | 90÷30= | 270+50= |
| 6.4-2.8= | 54÷18= | 105+70= | 360-200= |