题目内容

化简200220012÷(200220022+20022000)=
20022001
20022004
20022001
20022004
分析:设20022001=x,那么:200220012÷(200220022+20022000)=x2÷[(x+1)2+x-1]=x2÷(x2+2x+1+x-1)=x2÷(x2+3x)=x÷(x+3)=20022001÷20022004=
20022001
20022004
解答:解:设20022001=x,则200220012÷(200220022+20022000),
=x2÷[(x+1)2+x-1],
=x2÷(x2+2x+1+x-1),
=x2÷(x2+3x),
=x÷(x+3),
=20022001÷20022004,
=
20022001
20022004

故答案为:
20022001
20022004
点评:本题主要是利用设元的方法,减少数的运算.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网