题目内容
化简200220012÷(200220022+20022000)=
.
| 20022001 |
| 20022004 |
| 20022001 |
| 20022004 |
分析:设20022001=x,那么:200220012÷(200220022+20022000)=x2÷[(x+1)2+x-1]=x2÷(x2+2x+1+x-1)=x2÷(x2+3x)=x÷(x+3)=20022001÷20022004=
.
| 20022001 |
| 20022004 |
解答:解:设20022001=x,则200220012÷(200220022+20022000),
=x2÷[(x+1)2+x-1],
=x2÷(x2+2x+1+x-1),
=x2÷(x2+3x),
=x÷(x+3),
=20022001÷20022004,
=
,
故答案为:
.
=x2÷[(x+1)2+x-1],
=x2÷(x2+2x+1+x-1),
=x2÷(x2+3x),
=x÷(x+3),
=20022001÷20022004,
=
| 20022001 |
| 20022004 |
故答案为:
| 20022001 |
| 20022004 |
点评:本题主要是利用设元的方法,减少数的运算.
练习册系列答案
相关题目