题目内容
若
为一个四位数,且a=d,b=c,则称这个数为四位对称数,四位对称数共有______个.
| . |
| abcd |
a不能为0,所以d也不能为0,则a、d可以为1、2、3、4、5、6、7、8、9、共9种选择方法,
b、c可以为0、1、2、3、4、5、6、7、8、9、共10选择种方法,
所以四位对称数共有9×10=90(个).
故答案为:90.
b、c可以为0、1、2、3、4、5、6、7、8、9、共10选择种方法,
所以四位对称数共有9×10=90(个).
故答案为:90.
练习册系列答案
相关题目