题目内容
| 看清题目,巧思妙算 ①402÷1.25 |
②999×9999 | ③2010
|
④
|
分析:算式①可根据商不变的性质,将被除数与除数同时乘以0.8后进行计算;
算式②可将式听9999变为10000-1后再根据乘法分配律进行计算;
算式③可将式中的带分数化为假分数后,再根据乘法分配律简算分子,然后约分进行巧算;
算式④可根据巧算公式
=
-
进行计算.
算式②可将式听9999变为10000-1后再根据乘法分配律进行计算;
算式③可将式中的带分数化为假分数后,再根据乘法分配律简算分子,然后约分进行巧算;
算式④可根据巧算公式
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
解答:解:①402÷1.25
=(402×0.8)÷(1.25×0.8)
=321.6÷1,
=321.6;
②999×9999
=999×(10000-1),
=999×10000-999,
=9990000-999,
=9989001;
③2010
÷2009÷2009
=
×
×
,
=
×
,
=
×
,
=
×
,
=
×
,
=
×
,
=
.
④
+
+
+
+
.
=
+
+
+
+
,
=
-
+
-
+
-
+
-
+
-
,
=
-
,
=
.
=(402×0.8)÷(1.25×0.8)
=321.6÷1,
=321.6;
②999×9999
=999×(10000-1),
=999×10000-999,
=9990000-999,
=9989001;
③2010
| 1 |
| 2008 |
=
| 2010×2008+1 |
| 2008 |
| 1 |
| 2009 |
| 1 |
| 2009 |
=
| (2009+1)×2008+1 |
| 2008 |
| 1 |
| 2009×2009 |
=
| 2009×2008+2008+1 |
| 2008 |
| 1 |
| 2009×2009 |
=
| 2009×2008+2009 |
| 2008 |
| 1 |
| 2009×2009 |
=
| 2009×(2008+1) |
| 2008 |
| 1 |
| 2009×2009 |
=
| 2009×2009 |
| 2008 |
| 1 |
| 2009×2009 |
=
| 1 |
| 2008 |
④
| 1 |
| 30 |
| 1 |
| 42 |
| 1 |
| 56 |
| 1 |
| 72 |
| 1 |
| 90 |
=
| 1 |
| 5×6 |
| 1 |
| 6×7 |
| 1 |
| 7×8 |
| 1 |
| 8×9 |
| 1 |
| 9×10 |
=
| 1 |
| 5 |
| 1 |
| 6 |
| 1 |
| 6 |
| 1 |
| 7 |
| 1 |
| 7 |
| 1 |
| 8 |
| 1 |
| 8 |
| 1 |
| 9 |
| 1 |
| 9 |
| 1 |
| 10 |
=
| 1 |
| 5 |
| 1 |
| 10 |
=
| 1 |
| 10 |
点评:完成此类题目要认真分析式中数据的特点及内在联系,然后选择合适的方法进行计算.
练习册系列答案
相关题目