题目内容
(0.3+0.
)+(0.3×2+0.
×3)+(0.3×3+0.
×5)+…+(0.3×50+0.
×99)
| ? |
| 3 |
| ? |
| 3 |
| ? |
| 3 |
| ? |
| 3 |
分析:根据题意,去掉括号,把原式变为两个式子,即:0.3+0.3×2+0.3×3+…+0.3×50;0.
+0.
×3+0.
×5+…+0.
×99,又因为0.
=
,然后再根据乘法分配律和求和公式进一步解答即可.
| ? |
| 3 |
| ? |
| 3 |
| ? |
| 3 |
| ? |
| 3 |
| ? |
| 3 |
| 1 |
| 3 |
解答:解:根据题意可得:
(0.3+0.
)+(0.3×2+0.
×3)+(0.3×3+0.
×5)+…+(0.3×50+0.
×99),
=(0.3+0.3×2+0.3×3+…+0.3×50)+(0.
+0.
×3+0.
×5+…+0.
×99),
=0.3×(1+2+3+…+50)+
×(1+3+5+…+99),
=0.3×[(1+50)×50÷2]+
×[(1+99)×50÷2],
=0.3×1275+
×2500,
=382.5+833
,
=1215
.
(0.3+0.
| ? |
| 3 |
| ? |
| 3 |
| ? |
| 3 |
| ? |
| 3 |
=(0.3+0.3×2+0.3×3+…+0.3×50)+(0.
| ? |
| 3 |
| ? |
| 3 |
| ? |
| 3 |
| ? |
| 3 |
=0.3×(1+2+3+…+50)+
| 1 |
| 3 |
=0.3×[(1+50)×50÷2]+
| 1 |
| 3 |
=0.3×1275+
| 1 |
| 3 |
=382.5+833
| 1 |
| 3 |
=1215
| 5 |
| 6 |
点评:根据题意,把原来的式子变为两个简单的式子,然后再进一步计算即可.
练习册系列答案
相关题目
| 1.23÷3= | 0.8×11= | 1-0.75= |
| 1.7×0.4= | 0.36÷12= | 1.6+0.38= |
| 1.2÷0.3= | 0.75×4= | 15×0.4= |
| 2.14-0.9= | 4×0.25= | 10÷2.5= |
| 0.4×52= | 1.6×0.4= | 9.6÷6= |
| 4.3-0.4= | 7-6.2= | 0.86-0.3= |
| 8.8÷2.2= | 2.6÷0.2= | 0.15×3= |
| 0.9÷0.45= | 0.27÷3= | 0.51+1.7= |
| 0.6÷0.5= | 0.125×8= | 0.38×1000= |
| 6.8-1.7= | 2.4×0.2= | 32.8+19= |
| 0.56÷14= | 1÷0.05= | 6÷12= |
| 0.14×5= | 3×1.4= | 4.9÷0.7= |
| 0.4÷8= | 6.3+3.7= | 3.5×0.2= |
| 0.2×12.6×5= | 8.4÷4.2= | 2.4×0.5= |
| 0÷3.5×0.2= | 0×9.7+2.3= | 1.6×9+1.6= |
| 3.8+1.2= | 4.8÷0.3= | 530+270= |
| 7.6÷3.8= | 92÷2.3= | 9.6-1.6= |
| 7.2+2.8= | 2.63+0.37= | 0.67+1.24= |
| 0.3×101= | 0.25×8= | 16÷1.6= |
| 26.1-3.5-7.5= |