题目内容
请观察下列算式,找出规律并填空.
=1-
,
=
-
,
=
-
,
=
-
(1)则第10个算式是
=
-
-
,
(2)第n个算式为:
=
-
-
.
(3)根据以上规律解答下题:
若有理数a,b满足a=1,b=3,试求
+
+
+…+
的值.
| 1 |
| 1×2 |
| 1 |
| 2 |
| 1 |
| 2×3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3×4 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4×5 |
| 1 |
| 4 |
| 1 |
| 5 |
(1)则第10个算式是
| 1 |
| 10×11 |
| 1 |
| 10×11 |
| 1 |
| 10 |
| 1 |
| 11 |
| 1 |
| 10 |
| 1 |
| 11 |
(2)第n个算式为:
| 1 |
| n×(n+1) |
| 1 |
| n×(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n |
| 1 |
| n+1 |
(3)根据以上规律解答下题:
若有理数a,b满足a=1,b=3,试求
| 1 |
| ab |
| 1 |
| (a+2)(b+2) |
| 1 |
| (a+4)(b+4) |
| 1 |
| (a+100)(b+100) |
分析:(1)(2)根据特例,分母为两个自然数的乘积,这个分数可以拆成两个分数相减的形式;
(3)把a=1,b=3代入算式,即
+
+
+…+
,然后把每个分数拆成两个分数相减的形式,然后通过加减相互抵消,得出结果.
(3)把a=1,b=3代入算式,即
| 1 |
| 1×3 |
| 1 |
| 3×5 |
| 1 |
| 5×7 |
| 1 |
| 101×103 |
解答:解:(1)
=
-
;
(2)
=
-
;
(3)
+
+
+…+
,
=
+
+
+…+
,
=
+
+
+…+
,
=
×[(1-
)+(
-
)+(
-
)+…+(
-
)],
=
×[1-
],
=
×
,
=
;
故答案为:
,
-
,
,
-
.
| 1 |
| 10×11 |
| 1 |
| 10 |
| 1 |
| 11 |
(2)
| 1 |
| n×(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
(3)
| 1 |
| ab |
| 1 |
| (a+2)(b+2) |
| 1 |
| (a+4)(b+4) |
| 1 |
| (a+100)(b+100) |
=
| 1 |
| 1×3 |
| 1 |
| (1+2)×(3+2) |
| 1 |
| (1+4)×(3+4) |
| 1 |
| (1+100)×(3+100) |
=
| 1 |
| 1×3 |
| 1 |
| 3×5 |
| 1 |
| 5×7 |
| 1 |
| 101×103 |
=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 101 |
| 1 |
| 103 |
=
| 1 |
| 2 |
| 1 |
| 103 |
=
| 1 |
| 2 |
| 102 |
| 103 |
=
| 51 |
| 103 |
故答案为:
| 1 |
| 10×11 |
| 1 |
| 10 |
| 1 |
| 11 |
| 1 |
| n×(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
点评:通过分数的拆分计算的题目,使拆分后的分数能够通过加减相互抵消,达到简算的目的.
练习册系列答案
相关题目