题目内容
把一个长9厘米,宽8厘米,高6厘米的长方体表面全部涂上绿色,然后把它切成棱长为1厘米的小正方体.在这些小正方体中,只有一面涂色的有
188
188
块,只有两面涂色的有68
68
块.分析:长方体的长、宽、高上分别切割成9个、8个、6个小正方体,由此根据只有一面涂色的小正方体在每个正方体的面上,只有2面涂色的小正方体在长方体的棱长上(不包括8个顶点处的小正方体),即可解答问题.
解答:解:9-2=7;8-2=6;6-2=4;
所以只有一面涂色的有:(7×6+7×4+6×4)×2,
=94×2,
=188(个),
只有两面涂色的有:(7+6+4)×4,
=17×4,
=68(个),
答:只有一面涂色的有188块,只有两面涂色的有68块.
故答案为:188;68.
所以只有一面涂色的有:(7×6+7×4+6×4)×2,
=94×2,
=188(个),
只有两面涂色的有:(7+6+4)×4,
=17×4,
=68(个),
答:只有一面涂色的有188块,只有两面涂色的有68块.
故答案为:188;68.
点评:抓住表面涂色的正方体切割小正方体的特点:1面涂色的在面上,2面涂色的在棱长上,3面涂色的在顶点处,没有涂色的在内部,由此即可解决此类问题.
练习册系列答案
相关题目