题目内容
考点:用字母表示数,梯形的面积
专题:用字母表示数,平面图形的认识与计算
分析:根据梯形的面积=(上底+下底)×高÷2,l是连接两腰中点的线段,所以l是上下底和的一半,据此得出梯形的面积即可.
解答:
解:S=(上底+下底)×高÷2,
因为l是连接两腰中点的线段.
l=(上底+下底)÷2,
上底+下底=2l
所以S=(上底+下底)÷2×h
=2l÷2×h
=lh,
故答案为:lh.
因为l是连接两腰中点的线段.
l=(上底+下底)÷2,
上底+下底=2l
所以S=(上底+下底)÷2×h
=2l÷2×h
=lh,
故答案为:lh.
点评:本题考查了用字母表示数,以及梯形的面积公式,本题的关键是l是上下底和的一半.
练习册系列答案
相关题目