题目内容
用简便方法计算:
(1+
+
+
)×(
+
+
+
)-(1+
+
+
+
)×(
+
+
)=
.
(1+
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 5 |
分析:本题可利用换元法进行解决,设A=1+
+
+
,B=
+
+
,所以原式化为a×(b+
)-(a+
)×b=
(a-b)=
,即:(1+
+
+
)×(
+
+
+
)-(1+
+
+
+
)×(
+
+
)=
.
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 5 |
解答:解::(1+
+
+
)×(
+
+
+
)-(1+
+
+
+
)×(
+
+
)
设设a=1+
+
+
,b=
+
+
,所以原式化为:
a×(b+
)-(a+
)×b
=a×b+
×a-a×b-
×b,
=
×(a-b),
=
×[(1+
+
+
)-(
+
+
)],
=
.
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
设设a=1+
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
a×(b+
| 1 |
| 5 |
| 1 |
| 5 |
=a×b+
| 1 |
| 5 |
| 1 |
| 5 |
=
| 1 |
| 5 |
=
| 1 |
| 5 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
=
| 1 |
| 5 |
点评:换元法也是分数巧算中常用的方法.
练习册系列答案
相关题目