题目内容
三个车间共同生产一批零件,第一车间生产600个,第二车间生产的是余下的20%,第三车间正好是这批零件的一半,第二、三车间共生产多少个?
分析:根据第二车间生产的是余下的20%,第三车间正好是这批零件的一半,等量关系式为:这批零件的
=第一车间生产余下的(1-20%),求出第一车间生产后余下的占这批零件的几分之几,
÷(1-20%)=
,第一车间生产这批零件的1-
=
,这批零件的数量为:600÷
=1600(个),第二、三车间共生产的数量为:1600-600=1000(个).
| 1 |
| 2 |
| 1 |
| 2 |
| 5 |
| 8 |
| 5 |
| 8 |
| 3 |
| 8 |
| 3 |
| 8 |
解答:解:
÷(1-20%)=
,
1-
=
,
600÷
=1600(个),
1600-600=1000(个),
答:第二、三车间共生产1000个.
| 1 |
| 2 |
| 5 |
| 8 |
1-
| 5 |
| 8 |
| 3 |
| 8 |
600÷
| 3 |
| 8 |
1600-600=1000(个),
答:第二、三车间共生产1000个.
点评:此题先把第一车间生产后余下的零件看作单位“1”,找出等量关系式求出,再求出这批零件总数,即可解决问题.
练习册系列答案
相关题目