题目内容
用字母a、b、c表示下面运算定律:
乘法分配律
乘法分配律
a×(b+c)=ab+ac
a×(b+c)=ab+ac
;加法结合律(a+b)+c=a+(b+c)
(a+b)+c=a+(b+c)
.分析:乘法分配律:两个数相加再乘另一个数,等于把这个数分别与两个加数相乘,再把两个积相加,得数不变.用字母表示:a×(b+c)=ab+ac;
加法结合律:先把前两个数相加,或先把后两个数相加,和不变,这叫做加法结合律,用字母表示为(a+b)+c=a+(b+c).
加法结合律:先把前两个数相加,或先把后两个数相加,和不变,这叫做加法结合律,用字母表示为(a+b)+c=a+(b+c).
解答:解:乘法分配律:a×(b+c)=ab+ac;
加法结合律:(a+b)+c=a+(b+c);
故答案为:a×(b+c)=ab+ac;(a+b)+c=a+(b+c).
加法结合律:(a+b)+c=a+(b+c);
故答案为:a×(b+c)=ab+ac;(a+b)+c=a+(b+c).
点评:此题重点考查学生对运算定律的掌握情况.因为运算定律较多,应熟练掌握、仔细分清.
练习册系列答案
相关题目