题目内容
(1)
(2)
×
(3)
+…+
(4)
×
-
×
.
解:(1)5
+0.5x=6
,
5
+
x-5
=6
-5
,
x=
,
x×2=
×2,
x=
;
(2)(1
×8.12+5
÷
×8
),
=(1+
)×
+(5+
)÷
×(8+
),
=(1+
)×
+
×
×(8+
),
=(1+
)×
+
×(8+
),
=(1+
+8+
)×
,
=10×
,
=81
;
(3)
+
+
+…+
,
=
-
+
-
+
-
+…+
-
,
=
-
,
=
;
(4)
×
-
×
,
设K=
+
+
,
原式=(
+K)×(K+
)-(k+
+
)×K,
=K×K+(
+
)×K+
×
-K×K-(
+
)×K,
=
×
,
=
.
分析:(1)把0.5化为分数
,根据等式的性质,两边同减去5
,再同乘2即可;
(2)把8.12化为分数,通过进一步计算,运用乘法分配律简算;
(3)通过观察,此算式的分子都是3,分母中的两个因数相差也是3,可以把每个分数拆分成两个分数相减的形式,然后通过加减相抵消的方法,求得结果;
(4)此算式较长,直接计算较麻烦,我们不妨采用设数法,设K=
+
+
,计算较为简便.
点评:此题考查了解方程以及四则混合运算,解方程时依据等式的性质;在脱式计算中,特别注意运算顺序和运算法则,对分数、小数的互化要细心.根据题目情况,灵活处理.
5
x=
(2)(1
=(1+
=(1+
=(1+
=(1+
=10×
=81
(3)
=
=
=
(4)
设K=
原式=(
=K×K+(
=
=
分析:(1)把0.5化为分数
(2)把8.12化为分数,通过进一步计算,运用乘法分配律简算;
(3)通过观察,此算式的分子都是3,分母中的两个因数相差也是3,可以把每个分数拆分成两个分数相减的形式,然后通过加减相抵消的方法,求得结果;
(4)此算式较长,直接计算较麻烦,我们不妨采用设数法,设K=
点评:此题考查了解方程以及四则混合运算,解方程时依据等式的性质;在脱式计算中,特别注意运算顺序和运算法则,对分数、小数的互化要细心.根据题目情况,灵活处理.
练习册系列答案
相关题目