题目内容
(2004-1)+(2003-2)+(2002-3)+…+(1003-1002)
分析:通过观察可知,2004-1002=1002,2003-21001=1002,…,结果共有1002个1002.
解答:解:(2004-1)+(2003-2)+(2002-3)+…+(1003-1002),
=(2004-1002)+(2003-1001)+(2002-1000)+…+(1003-1),
=1002+1002+1002+…+1002,
=1002×1002,
=1004004.
=(2004-1002)+(2003-1001)+(2002-1000)+…+(1003-1),
=1002+1002+1002+…+1002,
=1002×1002,
=1004004.
点评:此题也可用高斯求和公式解答:2004-1+2003-2+…+1003-1002,
=(1003+1004+…+2003+2004)-(1+2+3+…+1001+1002),
=(1003+2004)×1002÷2-(1+1002)×1002÷2,
=1506507-502503;
=1004004.
=(1003+1004+…+2003+2004)-(1+2+3+…+1001+1002),
=(1003+2004)×1002÷2-(1+1002)×1002÷2,
=1506507-502503;
=1004004.
练习册系列答案
相关题目
246×
|
(
| ||||||||||||||||||||||
| 2004×4+97×2004 | 1+2+3+4+…+99+100+99+…+4+3+2+1. |
能简算的要简算
| ①2004× | ②1.25÷(5+0.25) |
| ③4.9÷ | ④ |
| ⑤(1- | ⑥( |