题目内容
我校五年级有3个班的学生参加今天的数学竞赛,至少有
10
10
人被选上才能保证有4名同学同班.分析:建立抽屉:把三个班看做3个抽屉,把参赛的学生看做元素,要求至少至少有几人被选上才能保证有4名同学同班,利用抽屉原理,考虑最差情况即可解决问题.
解答:解:把三个班看做3个抽屉,把参赛的学生看做元素,
考虑最差情况:3个抽屉都有3个元素,那么一共有3×3=9(个)元素,
此时再多1个元素,无论放到哪个抽屉都能满足一个抽屉里出现4个元素.
所以:3×3+1=10(个),
答:至少有10人被选上才能保证有4名同学同班.
故答案为:10.
考虑最差情况:3个抽屉都有3个元素,那么一共有3×3=9(个)元素,
此时再多1个元素,无论放到哪个抽屉都能满足一个抽屉里出现4个元素.
所以:3×3+1=10(个),
答:至少有10人被选上才能保证有4名同学同班.
故答案为:10.
点评:此题考查了利用抽屉原理解决实际问题的方法的灵活应用,这里需要考虑最差情况.
练习册系列答案
相关题目