题目内容
计算:(1+
+
+
)×(
+
+
+
)-(1+
+
+
+
)×(
+
+
)=
.
| 1 |
| 2004 |
| 1 |
| 2006 |
| 1 |
| 2008 |
| 1 |
| 2004 |
| 1 |
| 2006 |
| 1 |
| 2008 |
| 1 |
| 2010 |
| 1 |
| 2004 |
| 1 |
| 2006 |
| 1 |
| 2008 |
| 1 |
| 2010 |
| 1 |
| 2004 |
| 1 |
| 2006 |
| 1 |
| 2008 |
| 1 |
| 2010 |
| 1 |
| 2010 |
分析:通过观察,发现此算式中的数字有一定特点,可以用字母表示数的方法进行解答.设设
+
+
=a,
+
+
+
=b,则原式变为:(1+a)×b-(1+b)×a,经过化简,再把数字代入,即可求出.
| 1 |
| 2004 |
| 1 |
| 2006 |
| 1 |
| 2008 |
| 1 |
| 2004 |
| 1 |
| 2006 |
| 1 |
| 2008 |
| 1 |
| 2010 |
解答:解:设
+
+
=a,
+
+
+
=b,则原式变为:
(1+a)×b-(1+b)×a,
=b+ab-a-ab,
=b-a,
=
+
+
+
-(
+
+
),
=
;
故答案为:
.
| 1 |
| 2004 |
| 1 |
| 2006 |
| 1 |
| 2008 |
| 1 |
| 2004 |
| 1 |
| 2006 |
| 1 |
| 2008 |
| 1 |
| 2010 |
(1+a)×b-(1+b)×a,
=b+ab-a-ab,
=b-a,
=
| 1 |
| 2004 |
| 1 |
| 2006 |
| 1 |
| 2008 |
| 1 |
| 2010 |
| 1 |
| 2004 |
| 1 |
| 2006 |
| 1 |
| 2008 |
=
| 1 |
| 2010 |
故答案为:
| 1 |
| 2010 |
点评:此题采用了用字母表示数的方法,这种方法简捷易行,也是经常使用的方法.
练习册系列答案
相关题目